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Slab waveguide
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Slab waveguide consists of a slab of high-index material surrounded
by low-index material (           ). The waveguide is assumed to be
infinitely large in the y and z-directions.

We wish to find confined electromagnetic modes that propagate
in the +z direction and solve the source-free time-harmonic wave equation
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Wave equation

In general, solution for the electric-field can be written as

( , , ) ( , , ) ( ,ˆ ˆ ˆ( , , )) ,y zxx y z xE yx y z x y xzE zE z y+= +E

If we plug back into the wave equation,
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We separate into three equations
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Let’s expand equation (1)
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Wave equation

Using separation of variables, we assume

( , , ) ( ) ( ) ( )xE x y z f x g y h z=

If we plug back into equation (2)
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The sum of the terms can equal a constant only if each individual term is a constant
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Typical solutions for these differential equations:
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(travelling wave)

(standing wave)

(evanescent wave)
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Slab waveguide
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We look for a solution that is transverse electric (TE),
“bound” to the core of the waveguide, and travelling

in the z-direction such that 

( , ) ( , ) ( ) ( )ˆ
y y zyE x z E x z f x h→ ==E

where we assume there is no dependence on y
given the slab is translationally invariant in the
y-direction.

Along the z-direction we expect a traveling 
wave solution
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Along the x-direction, we expect a standing wave solution in the 
waveguide core and evanescent solution in the cladding.

Even solution Odd solution



Slab waveguide

Plug into 
wave equation
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Apply boundary conditions at interface
between core and cladding.
Tangential component of electric
and magnetic field are equal across
interface.
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Slab waveguide

After rearranging3 ( )
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Slab waveguide
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Solve graphically4



Cutoff condition
In the example on the previous slide we see that the TE1 mode would not
have a solution and would be “cutoff” if the radius of the circle is less than π/2

The cutoff condition for each mode can be generalized as

1 1 2 2(       m=0,1,2,3...)
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m
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  − = (Cutoff condition for TEm mode)

The waveguide will be single-mode if all modes except the fundamental
mode are cutoff.
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Effective index

Effective index
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Effective index
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Effective index is a measure of how
confined the mode is to the core



Optical confinement factor
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Weak guidance limit (mode is mostly within cladding)
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(1) Thick core
(2) Small wavelength
(3) Large index contrast



TM modes
( , ) ( , ) ( ) ( )ˆ

y y zyH x z H x z f x h→ ==H
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Even solution Odd solution

Along the z-direction we expect a traveling 
wave solution

Along the x-direction, we expect a standing wave solution in the 
waveguide core and evanescent solution in the cladding.
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Rectangular waveguides

Rectangular waveguides have dielectric contrast in two-directions
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Rectangular waveguides do not support pure TE or TM modes!
Instead they support hybrid modes.



Rectangular waveguides

Intensity patterns

00 00or  EHHE 01 01or  EHHE 10 10or  EHHE
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Hybrid modes

pqHE ,x yH E are the dominant components (quasi-TE)

pqEH ,x yE H are the dominant components (quasi-TM)

number of nodes in the x-directionp →

number of nodes in the y-directionq →



Effective index method

We estimate the propagation constant of the HE00 mode with the 
effective index method. We essentially break the 2D problem into a 
1D slab waveguide problem.

To simplify this problem we assume that the waveguide is completely
surrounded by the same index. More sophisticated examples are found
in the book.
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Step 1
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Solve for the TE mode of the slab waveguide with core of permittivity ϵ1
and cladding with permittivity ϵ2

Calculate the effective index 𝑛𝑒𝑓𝑓,1
and modal distribution 𝐹(𝑥)
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Step 2
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Solve for the TM mode slab waveguide with core of permittivity 𝑛𝑒𝑓𝑓
2

and cladding with permittivity ϵ2. Calculate the propagation constant 𝛽𝑧
and modal distribution G(𝑦).
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The overall propagation constant of the 2D waveguide is then 𝛽𝑧
and the modal distribution of the 2D waveguide is given by

( , ) ( ) ( )yE x y F x G y=


