Instructor: Seth A. Fortuna

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley

3/14/2019




d/2

61 >/
—d/2

€
Slab waveguide consists of a slab of high-index material surrounded
by low-index material (€, = €,). The waveguide is assumed to be

infinitely large in the y and z-directions.

We wish to find confined electromagnetic modes that propagate
in the +z direction and solve the source-free time-harmonic wave equation

(V?+ 0’ e)E=0



In general, solution for the electric-field can be written as
E(X,y,2) =XE (X,Y,2)+ YE, (X, ¥,2) + ZE,(X, Y, 2)
If we plug back into the wave equation,
VPE + '’ ueE = V* (XE, + JE, + 2E, )+ &’ e (XE, + E, + 2E, )
We separate into three equations
VE, +@’ucE, =0 (1)
VzEy +a)2,ueEy =0
V°E, + @’ ueE, =0
Let’s expand equation (1)
O°E, O°E, O°E

V’E, + ®° ueE, = —>* + +
X ’u X 6y2 ayZ 822

“+ B°E, =0 (2)



Using separation of variables, we assume

E,(x,y,2) = 1(x)g(y)h(z)

If we plug back into equation (2)

1d°f 1d’g 1d°h_

f dx* g dy° "hd? =/

The sum of the terms can equal a constant only if each individual term is a constant

1d*f , 1d%g ., 1d%h

— 2
f dx? 'Bxgd 'Byfdz2 Z

Typical solutions for these differential equations:

f(x)=Ae "+ A (travelling wave)
f (x) =B, cos(fB x)+B,sin(5,x) (standing wave)

f(x)= Cle“ﬁxx (evanescent wave)



We look for a solution that is transverse electric (TE),
“bound” to the core of the waveguide, and travelling
in the z-direction such that

62 X
T2 E=YE (X,2) > E (X,2) = T (x)h(z)
—>
61 / where we assume there is no dependence ony
L ~d/2  given the slab is translationally invariant in the
y-direction.
62 Along the z-direction we expect a traveling

wave solution
—_ _iﬁzz iﬂzz
h(z)=Ce ™ +C,e

Along the x-direction, we expect a standing wave solution in the
waveguide core and evanescent solution in the cladding.

f () = Ag o d-d/2) x| >d/2 (x) - Be -4/ x| >d/2
~|Acos(B,x) -d/2<x<d/2 |B,sin(Bx) -d/2<x<d/2

Even solution Odd solution
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@ Plug into - B =0 e
. - 2 2 2

wave equation —a +ﬂz = 0" L€,

@ Apply boundary conditions at interface
between core and cladding.
Tangential component of electric R
and magnetic field are equal across

interface.
Ey,core et d - Ey,clad werd
o 2
Hz,core werd = HZ.Clad werd
2 2



@ After rearranging




@ Solve graphically
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In the example on the previous slide we see that the TE; mode would not
have a solution and would be “cutoff” if the radius of the circle is less than /2

The cutoff condition for each mode can be generalized as

w(ﬂlﬁl _,Uzez)% — m% m=0,1,2,3... (Cutoff condition for TE_, mode)

The waveguide will be single-mode if all modes except the fundamental
mode are cutoff,

(e — ,uzez)% < % (Single mode condition)



Effective index

High-frequency limit

Low-frequency limit
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Effective index is a measure of how
confined the mode is to the core

Low w




1 £\ 4
Power in core 2 -[ Re(EXH )'de

_ core

" Total power in mode 1 [ Re(ExH")-zdx
2

total

Weak guidance limit (mode is mostly within cladding)

2
= ZKQ) (nf-n?)
A
For largest possible I’

(1) Thick core
(2) Small wavelength
(3) Large index contrast



H=yH (x,z) > H (x,z) = f(x)h(z)

Along the z-direction we expect a traveling
wave solution

h(z) =Ce " +Ce"

Along the x-direction, we expect a standing wave solution in the
waveguide core and evanescent solution in the cladding.

f ( ) Ale—a(|x|—d/2) |X| S d/2 f X) {Blea(xd/Z) |X| > d/2
X) = — ]
A cos(B.x) —d/2<x<d/2 B,sin(f,x) —-d/2<x<d/2
Even solution Odd solution
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Rectangular waveguides have dielectric contrast in two-directions

Rectangular waveguides do not support pure TE or TM modes!
Instead they support hybrid modes.



Hybrid modes

Hqu H,,E, arethe dominant components (quasi-TE)

EH ., E_H , are the dominant components (quasi-TM)

Intensity patterns

P — number of nodes in the x-direction

g — number of nodes in the y-direction

a

HE,, or EH, HE,, or EH, HE,, or EH,,
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We estimate the propagation constant of the HE,, mode with the
effective index method. We essentially break the 2D problem into a
1D slab waveguide problem.

To simplify this problem we assume that the waveguide is completely
surrounded by the same index. More sophisticated examples are found
in the book.
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Solve for the TE mode of the slab waveguide with core of permittivity e
and cladding with permittivity €,

€

Calculate the effective index nqf5 1
d € and modal distribution F(x)
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Solve for the TM mode slab waveguide with core of permittivity ngff

and cladding with permittivity €,. Calculate the propagation constant £,
and modal distribution G(y).

The overall propagation constant of the 2D waveguide is then 5,
and the modal distribution of the 2D waveguide is given by

E,(x,y) =F(X)G(y)



